

FreedomCAR & Vehicle Technologies Program

Energy Storage R & D Efforts

Presented to

The Plug-in Hybrid Vehicle Forum

at

The Air Quality Management District Headquarters

By

Tien Q. Duong
FreedomCAR and Vehicle Technologies Program
U.S. Department of Energy

July 12, 2006

- Mission and Goal
- Budget
- Program Structure
 - ☐ High Power Energy Storage
 - Developer Program (USABC Activity)
 - Applied Research
 - ☐ High Energy Battery Development
 - Focused Fundamental Research
- Current Research Emphasis
- □ SAFT High Energy Lithium-ion 47.5Ah cells
- Lessons Learned/Challenges
- Thoughts on PHEV Batteries

Mission and Goals

Mission

Conduct research and development on electrochemical energy storage technologies which support the commercialization of hybrid electric vehicles

Goals

- ☐ By 2010, develop an electric drivetrain energy storage system with 15-year life at 300 Wh, with discharge power of 25 kW for 18 seconds, and \$20/kW
- □ Draft Goal By 2014, reduce the cost of PHEV batteries to \$300/kWh

	FY 06 (\$k)	FY 07 Request (\$k)	Part of FY 07 Request for Plug-Ins (\$k)
High Power Energy Storage	16,720	17,181	
High Energy Battery Development	1,443	7,615	6,172
Focused Fundamental Research	6,279	6,343	
Total Energy Storage	24,442	31,139	
Technologies Relevant to Plug-In HEV			
Advanced Power Electronics	12,895	13,680	2,000
Simulation and Validation	3,175	6,729	2,750
Vehicle Test & Evaluation	2,475	3,484	1,000

Program Structure

High Power Energy Storage

■ Develop electrochemical energy storage devices that meet FreedomCAR HEV goals

High Energy Battery Development

- Benchmark candidate and emerging technologies
- New Request in FY 2007: Plug-in hybrid battery development

Focused Fundamental Research

□ Conduct innovative, cutting-edge long term research on the next generation of lithium battery systems

High Power Energy Storage

Developer Program

Develop electrochemical energy storage devices that meet USABC/FreedomCAR technical goals

- ☐ United States Advanced Battery Consortium (USABC) is a partnership among DaimlerChrysler, Ford, and General Motors formed in 1991 to foster the development of advanced batteries
- □ Develop full battery systems through competitive subcontracts with the USABC
 - Performance targets developed through modeling and simulation
 - Candidate technologies benchmarked before full-scale development
 - » All contracts require a minimum cost-share of 50%
- □ USABC deliverables tested and analyzed against performance targets using standardized test procedures

High Power Energy Storage

Applied Research

A multi-laboratory effort assisting battery developers to overcome performance barriers associated with high-power Li-ion battery technology

Focus

- Understand, extend, and more accurately predict battery life
- Search for and develop low-cost cell materials and components
- Understand factors that affect abuse tolerance
- ☐ Understand factors that limit **low-temperature performance**

High Energy Battery Development

In FY 2007

Request of \$6.172 Million Increase for Plug-in Hybrid Electric Vehicle (PHEV) Battery Development

(An addition to funding levels and R&D efforts of previous years)

- Develop PHEV battery performance requirements in collaboration with US auto companies
- Benchmark and assess promising higher energy battery technologies
- □ Initiate research and development programs to address performance gaps
- □ Plan to issue solicitation in Fall 2006 through USABC

Focused Fundamental Research

A multi-laboratory and university effort to conduct innovative, cutting-edge research on the next generation of lithium battery systems

- ☐ Focused investigations on novel materials (cathode, anode, electrolyte) that promise greatly increased power and energy
- ☐ Develop and apply advanced electrochemical models
- □ Employ advanced diagnostic tools to investigate failure mechanisms
- □ Coordinate research effort with the DOE Office of Science and National Science Foundation

Current Research Emphasis

□ Anodes

- Develop novel inter-metallic alloys and new binders to accommodate their volume change
- Investigate nanophase metal oxides

□ Electrolytes

- Development of high voltage electrolytes (4.5 5 Volts)
- Development of electrolyte additives to improve interfacial stability
- Development of solid polymer electrolytes with improved conductivity and mechanical strength

□ Interphase studies

 Continue to search for better membrane or glasses to stabilize the surface of a metallic lithium anode

SAFT High Energy Lithium-ion 47.5Ah Cells

Capacity Fade over Number of Cycles

SAFT High Energy Lithium-ion 47.5Ah Cells

Power Fade over Number of Cycles

SAFT High Energy Lithium-ion 47.5Ah Cells

Power Fade over Calendar Life Test

Lessons Learned/ Challenges

Hybrid Electric Vehicles

- ☐ Development status of lithium-ion batteries for powerassist HEVs is about where NiMH was in 2000
- ☐ Major focus is on cost reduction
 - Abuse tolerance and performance at low temperatures are still issues
 - » New electrode materials (Li₄Ti₅O₁₂, LiFePO₄) now under development appear to address these two issues
 - Batteries, even those incorporating "stable" materials, will require appropriate thermal controls and electronic protection circuits to extend battery life and avoid thermal runaway
 - Battery life projections of 15 years are based on limited data.

Lessons Learned/ Challenges

Electric Vehicles

- ☐ Current battery technologies limit a vehicle's range on single charge to a value significantly less than 300 miles
- ☐ Cost increases with the size of the battery
 - Metallic lithium systems (150 Wh/kg) offer a longer range, but poor cycle life
 - Most lithium-ion systems are limited to 100 Wh/kg
 - Cathode materials being considered are capacity-limited
 - Batteries are power-limited, especially at 80%DOD after many cycles
 - Most lithium systems can not accommodate fast charge
 - » Batteries sitting at high SOC experience reduced calendar life

My Thoughts on PHEV Batteries

- ☐ Certainly a viable technology
 - Cost is a potential show stopper
- □ Development of PHEV batteries benefits from lessons learned during HEV and EV battery development – lot of synergies
 - Impact of dual mode of operation (electric only and power assist) on battery life is not understood
 - » Battery life may be extended if the engine were to provide power assistance, if needed, during the charge depleting portion of operation
 - » Operation at a less extreme "sweet spot" (i.e., 30-40% SOC) would extend battery life

Thank you for your support of the DOE Energy Storage R&D effort